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During the period July 1, 1983 to June 30, 1984, the Principal Investigator
gave an invited talk on "Life Distribution Properties of Devices Subject to
Deterioration" at the International Semi-Markov Processes Conference that was held
at Universite Libre de Bruxelles under the auspices of the Bermolli Society.
Moreover, he helped in organizing the session on Reliability Theory at the
conference. He co—edited the proceedings of the conference he organized on
Survival Models, Maintenance Policies and Life Testing. The proceedings will
be published by Academic Press Publishing Campany under the title "Reliability
Theory and Models: Stochastic Failure Models, Optimal Maintenance Policies,

Life Testing, Structure"; it is scheduled to appear on August 15, 1984. He
also wrote the paper "A Power Transformation Exponential Regression Model for
Cencored Failure Time Data" with Professor David Young of Brunel University,

England. This paper is to be submitted for publication to Coawminications in

Statistics; he revised the paper "Life Distribution Properties of Devices
Subject to a Pure Jump Damage Prc_.ess" which will appear in the December 1984

issue of Journal of Applied Probability. He is in the process of writing a

paper on "Imperfect Maintenance Models" which will be submitted to Journal of
Operations Research.

The Co-investigator attended numerous seminars and work group sessions on
stochastic processes at University of Paris VI between March 15, 1984 and June
1, 1984. He wrote two papers:

(1) An Iterative Scheme for Approximating Optimel Replacement Policies

(2) Stability of Optimal Replacement Policies
The first paper is to appear in Reliability Theory and Nbde;l.s: Stochastic

Failure Models, Optimal Maintenance Policies, Life Testing, Structures,




M. Abdel-Hameed, E. (;in]ar and J. Quinn, Editors, Academic Press, New York,

The secord paper has been submitted for publication.
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SUMMARY
OF RESEARCH CONDUCTES

A) LIFE DISTRIBUTION PROPERTIES OF DEVICES SUBJECT TO A

PURE JUMP DAMAGE PROCESS. Suppose that a device is subject to

damage, the amount of damage it suffers, over time, is assumed
to be an increasing pure jump process. We denote such a process

by Xz (X, t20).

It is known that there exists a Poisson random measure on R_ X R_whose mean
meausre at the point (s,z) is ds d.z/z2 and a deterministic function ¢ defined
on the positive quadrant that is increasing in the second argument such that

I OEXg_X) = S

N(ds,dz) f (Xs~,XS_+C(XS_, 2))
.sst [0,t]XR+

almost everywhere for each function £ on R, xR, with £(x,x) = 0 for
all x inR,. In particular, if follows that

X =X,+ i) N(ds,dz) c(X__,z).
t 0 [0,t]xR, s

The above forrmla has the following interpretation

t - xt(w) jumps at s if the Poisson randam measure N(w,.) has an atom
(s,z) and then the jump is fram the left-hand limit X, (w) to the right-hand
limit

X

X, + cX,_,2).

The function c(x,z) represents the damage due to a shock of magnitude =z

occuring at a time when the previous cumulative damage is equal to x.

Assume that the device has a threshold Y and it fails once the damage exceeds

or equal to Y. The failure time is therefore given by
;=inf{tzxth}.

Let G be the right tail probability of the random variable Y. Then the survival




function is given by, for t > 0,

S(t) = P(S > t)

E[E(xt)]

We show that life distribution properties of G are inherited as
corresponding properties of S. The following are samples of same of the results
obtained:

(1) Theorem. Suppose that the function c¢ above satisfies the following
condition

c(.,z):R+ + R, is increasing for each z 2 0.

Then

(i) S has increasing failure rate when G has increasing failure rate and
X has a totally positive density of order two

(ii) S has increasing failure rate on the average when G has an increasing
failure rate on the average and X has a totally positive density if order two

(iii) S is new better than used if G is new better than used

(2) Theorem. Suppose that the function c¢ satisfies the following condition

c(..z):R+ >R, is decreasing for each z > 0.

Then
(i) s has decreasing failure rate when G has decreasing failure rate and
X has a totally positive density of order two.
(ii) X has a decreasing failure rate average when G has a decreasing
failure rate average and X has a totally positive density of order two.
(iii) S is new worse than used when G is new worse than used and the
function x » x + c(x,z) is an increasing function for each z 2 0.
Furthermore, if the threshold depends on time and Y, is the threshold at
time t 2 0. Then




S(t) = E G(Xt,t)

where Gix,t) = P(Y, 2 x) for x, t 2 0. In this case we abtain the following
result
(3) Theorem (i) Suppose that G(.,t) has increasing failure rate average for
each t > 0, the mapping G(x,.) is decreasing function for each x 2 0, X has
a totally positive density of order two, and c(.,z} is an increasing function
for each z > 0. Then S has increasing failure rate average.

(ii) suppose that G(.,t) has a decreasing failure rate average for each
t 2 0, the mapping G(x,.) is an increasing function for each x 2 0, X has a
totally positive density of order two and c¢(.,z) is a decreasing function for
each z 2 0. Then S has decreasing failure rate average.

(iii) Suppose that V = -1n G is a subadditive function on Rf and c(.,z) is
an increasing function for each z > 0. Then S is new better than used.

(iv) Suppose that V above is a subadditive function on Rf_ while the
function x + x + c(x,z) is decreasing for each z > 0. Then S 1is new worse

than used.

We also discuss the optimal replacement problem for such devices.

Define, for t 2 0,

o
ct
A

+ Ft21 .

The process 2 = (Zt) is cobtained by killing the process X at the failure time
of the device.

A device subject to the damage process 2 can be replaced before or at
failure. Each replacement at failure cost ¢ dollars, c > 0. The cost of a
replacement before failure depends on the damage level at the time of replacement
and is denoted by c(.). That is to say, c(x) is the cost of a replacement
vhen the damage level at time of replacement is equal to x. Naturally, we




H 6

assume that c(x) is increasing and bounded above by c¢. Let (Ht) be the

canonical history of 2. Moreover, U denotes the class of stopping times that

do not exceed the life time .

For any stopping time <t in U we let F,T denote the expected cost of
replacement per unit time. We are interested in finding the stopping time 1t*
in U satisfying

_inf ¢
Eex ey T

That is to say, we want to find the stopping time in U that minimizes the
expected cost per unit time over U. We call such stopping time the optimal
replacement time. We give conditions on the cost function c{(x) and the damage

function c(x,2) that guarantee that the optimal replacement policy is a control-

limit policy.

The above results have been accepted for publication in Journal of Applied

Probability and is scheduled to appear in December 1984.

B) A POWER TRANSFORMATION EXPONENTIAL REGRESSION MODEL FOR

CENSORED FATIURE TIME DATA. Suppose that we have n items which are

* *
subject to failure. Let Ty, To) eoey T; be the random variables
representing the failure times of the first, second, ..., n th
item respectively. We assume that right censoring may occur

because of the need for early temination of the experiment and let

'rl, T2’ cens 'I‘n represent the recorded survival times. Defining

censoring indicator variables J

»

1 if T, is uncensored

[
» M

0 if . 1s censored

P




n =L w. and n_ = ¢ (1-w.)
i=1 i

denote the numbers of uncensored and censored observations respectively.
Without loss of generality we label the individuals such that the first
n, items have uncensored times to failure and the remaining n, have
censored times to failure.

We now suppose that measurements are available of k explanatory variables

Xl’ X2, cens Xk Setting x' = (xl,xz, cees xk), the probability density function

*
and survival function of T given x are denoted by £f(t;x) and S(t;x)
respectively. If the failure rate does not depend on t, for any given x,
*
T has the exponential distribution with probability density function

u;l exp (-t/ux) P £20
f£(t;x) = - =

0 otherwise.
Various models have been proposed in the literature to represent the
dependence of u, on X. Same suthors consider the model form
v, = Al +x'B)

X

while others use the form

u, = A(1+x'8)

where g' = (81, eeer Bk) and A is a positive constant. Both models require
that the condition x'g > -1 must be imposed to insure that u > 0. An
alternative model which does not require a constraint to be imposed on x'B is

b = A eap (x'8)




This model arises for the exponential case from the well-known family of
proportional hazard repression models in which an assumed underlying hazard

function is adjusted by multiplicative exponential factors to allow for the

effect of the explanatory variables.

In this paper, we consider the power transformation model given by

= 1/8
ue = (1 + 6x'B)

We refer t6° é as the power parameter. It is seen that when & = 1, the
model corresponds to the first model discussed in the previous paragraph,
second model is obtained after appropriate reparameterisation. When & + 0
the exponential model for M given above is obtained.

In general, the power p-ajrameter § as well as the coefficient vector 8
will have to be estimated fram the data. We obtain maximm likelihood estimators
for these parameters and it is shown how the estimates can be obtained using the
statistical package G LIM. We also discuss the assessment of the goodness of

fit of the model and mmerical examples are given to illustrate the procedure.

C) STABILITY OF OPTIMAL REPLACEMENT PROBLEMS. In this work we

camplete and considerably extend the work reported on in preliminary

fashion in section I(D) of last years proposal. Let X = {Xt, t 2 0}

be a Hunt process with state space E. let A be stopping time for X
and let X be the process obtained by killing X at . The state

space of X is now = E v{A} where the augmented point A denotes

“failure". A generalized replacement policy is a Markov time which

detemmines a system’s replacement in terms of its history. A
generalized e-optimal replacement policy at X is a generalized policy

such that li:xg(X,t )/Ex('re) is within ¢ of the minimm long-run average
€
cost for the replacement cost function g. Here E denotes expectation

with respect to the process X.




A generalized optimal replacement problem (X,),g) (at x) is termed stable
if every nearly optimal policy for the problem (X,A,g) is nearly optimal for
any "sufficiently close" problem (Xl,Al,gl) and vice-versa. We show that, if
life times are not permitted to vary then under suitable definitions of
"closeness between problems", optimal replacement problems are stable. Examples
show that, when lifetimes can vary, such is no longer the case. When X is
restricted to be a one dimensional wear/damage process and the lifetimes are
restricted to be threshold times, it is shown that, if the threshold is one which
X misses with probability one, then every problem (X,A,g) is stable.

These results have been submitted for publication and were part of a talk

given at the 1983 Charlotte conference ¢n Stochastic Failure Models.

D) AN ITERATIVE SCHEME FOR APPROXIMATING OPTIMAL REPLACEMENT

POLICIES. let X = Xt' t > 0 be a stochastic process with augment
state space E° and lifetime A = inf {t |X_=4}. In this paper we
analyze the follwoing iterative technique. let b, = E%g(x,) /E° (0) .
Consider the problem of maximizing the criterion w(bl,;) = blEO(t)-EOg (XT;
for 1 < A. If we are interested in a generalized e-optimal policy,

then tolerances x > 0 and 8 > 0 are determined in terms of X,g,A and

€ so that, if a g-optimal policy 7 for w(bl,-r) gives w(bl,t) <o
then ) is already c-optimal, otherwise take b, = E'g ot 1/E (1))

and repeat the steps on the criterion qz(bz,r) = szO(r) - Eog Xt).

Under very reasonable assumptions on g (it must be positive and

bounded away fram zero), it is shown that this iterative method will
supply a generalized e-optimal replacement policy. We further

implement this scheme on a camputer for certain Markovian damage models.
In doing so, the discrete approximations which are required are fully

justified and same feeling for the speed of convergence of the procedure




)

10

is obtained. The iterative scheme itself is very fast. Solving the

related optimal stopping problems using dynamic programming techniques

is, however, very slow.

This work constitutes a campletion and considerable extension of that
reported on in a preliminary fashion in section I(E) of last year's proposal.
The iterative scheme itself is now seen to work for artibrary stochastic
processes (as opposed to just simple wear processes). The justification of the
discrete approximations required in the associated optimal stopping problems
constitutes an effort in the spirit of same of the work of Whitt but applied to
a problem which is outside the framework of those he has considered. The
numerical implementations and simulations also represent considerable progress on
the research proposed in the last paragraph of section II(E) of last year's
proposal.

These results are to appear in the proceedings of the Charlotte conference

on Stochastic Failure Models.

E) STABILITY OF OPTIMAL STOPPING PROBLEMS. For a process X

arnd a reward function g defined on the state space of X, we have
defined concepts of stability of the optimal stopping time (X,q) in
previously reported work. Roughly, (X,g) is center stable if a

close to optimal solution to the stopping time problem (X,g) is

close to optimal for any problem (Xl,gl) which is sufficiently "near"
to the problem (X,g). The problem (X,g) is termed stable if close to
optimal solutions to any sufficiently "near" problem (Xl,gl) are close
to optimal for (X,g). There are two new things to report here. First
we have shown that, for n 2 2, Brownian motion in R" is not stable.

This solves Question 2 of part II(E) of last year's proposal. We

have also made headway in better understanding the metric we are using




11

to measure distances between processes. Recall that, if X = (@, Mt' M,

px,e t’xt) is a standard process in the usual sense, then §X denotes

the set of standard processes Y = (Q,MY’t,MY,P;,(;t,Xt) . Forx, Ye SX
define d(X,Y) by

d(X,Y) = sup swp  [py (B) - p’; @) ].

XeE AeE‘?

We recognize d-convergence as being convergence in total variation
on initial segments Fg. In the literature, weak convergence is what
is normally looked at when one wants to consider different processes
to have the same path space but different measures. However, examples
show that weak convergence is not strong enough for any kind of stability
for undiscounted problems with discontinuous reward functions (exactly
the setting we get into when considering optimal replacement problems).
What we have established about d-convergence is that, for diffusions with
the same diffusion term, d-convergence is implied by uniform convergence
of drift terms. However, if in the strictly elliptic case the diffusion
terms are permitted to vary, then a fairly simple argument shows that
the processes are singular and hence as far apart in the d-metric as
is possible. This means that the study of stability within the class

of diffusions is far from complete.

For campound Poisson processes, the situation is nice. Parameter convergence

cambined with convergence in total variation of the jump distributions is enough

to get d-convergence for these processes.
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